Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Sci Food Agric ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591419

RESUMO

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) is employed extensively in agriculture to enhance soil water retention; however, the underlying mechanism by which γ-PGA improves soil structure and soybean productivity in arid regions remains poorly understood. A micro-scale field experiment was conducted in the arid region of northwest China, employing five concentrations of γ-PGA to investigate its impacts on soybean yield, photosynthesis, and water-use efficiency, as well as soil aggregates and water distribution. The five levels of γ-PGA were 0 (CK), 10 (P1), 20 (P2), 40 (P3), and 80 kg ha-1 (P4). RESULTS: The results demonstrated that the application of γ-PGA significantly improved soybean yield, photosynthesis, and chlorophyll content. It resulted in a decrease in soil aggregate content with a maximum diameter of less than 0.053 mm and an increase in the stability of soil aggregates in the uppermost layer of the soil (0-30 cm). The application of γ-PGA significantly increased soil water content, particularly in the uppermost layer of the soil, and effectively reduced water consumption and improving water use efficiency in soybeans. Overall, the P3 treatment exhibited the most pronounced improvement of soybean yield, photosynthesis, water-use efficiency, as well as distribution of soil aggregates and water. The correlation matrix heatmap also revealed a strong correlation between improvement of soybean yield or photosynthesis at various γ-PGA application levels and the enhancement of soil stability or soil water content. CONCLUSION: The multivariate regression analysis revealed that an optimal application level of 46 kg ha-1 γ-PGA could enhance effectively both yield and water use efficiency of soybean in the arid region of northwest China. © 2024 Society of Chemical Industry.

2.
Adv Sci (Weinh) ; : e2402356, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647401

RESUMO

The proton exchange membrane water electrolyzer (PEMWE), crucial for green hydrogen production, is challenged by the scarcity and high cost of iridium-based materials. Cobalt oxides, as ideal electrocatalysts for oxygen evolution reaction (OER), have not been extensively applied in PEMWE, due to extremely high voltage and poor stability at large current density, caused by complicated structural variations of cobalt compounds during the OER process. Thus, the authors sought to introduce chromium into a cobalt spinel (Co3O4) catalyst to regulate the electronic structure of cobalt, exhibiting a higher oxidation state and increased Co-O covalency with a stable structure. In-depth operando characterizations and theoretical calculations revealed that the activated Co-O covalency and adaptable redox behavior are crucial for facilitating its OER activity. Both turnover frequency and mass activity of Cr-doped Co3O4 (CoCr) at 1.67 V (vs RHE) increased by over eight times than those of as-synthesized Co3O4. The obtained CoCr catalyst achieved 1500 mA cm-2 at 2.17 V and exhibited notable durability over extended operation periods - over 100 h at 500 mA cm-2 and 500 h at 100 mA cm-2, demonstrating promising application in the PEMWE industry.

3.
ACS Appl Mater Interfaces ; 16(1): 1543-1552, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38163251

RESUMO

The silk fibroin (SF)/ionic liquid (IL) based hydrogel is a kind of remarkable substrate for flexible devices because of its subzero-temperature elasticity, electrical conductivity, and water retention, although the procedure of the gelation is considered complex and time-consuming. In this work, we introduced an approximate method for the development of novel photo-cross-linked SF/IL hydrogel, that is, SF-IMA/PIL hydrogel via the modification of silk fibroin chain with 2-isocyanatoethyl methacrylate (SF-IMA) in a certain ionic liquid with an unsaturated double bond. The chemical cross-linking between methacrylated SF and IL was triggered by UV light, while the physical cross-linking of the hydrogel was attributed to the ß-sheet formation of SF in SF-IMA/IL mixed solution. In addition to being a UV-induced three-dimensional (3D) printable one, the SF-IMA/PIL hydrogel performed significant ionic conductivity between room temperature and -50 °C and water retention within a wide range of relative humidity, which were the featured advantages as the ionic liquid involved. Moreover, the static and dynamic mechanical tests demonstrated that the hydrogel reserved its great elasticity at -50 °C and displayed its stiffness transition temperatures between -100 and -70 °C.

4.
Aging Dis ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37962463

RESUMO

Zinc plays important roles in both physiological and pathological processes in the brain. Accumulation of free zinc in ischemic tissue is recognized to contribute to blood-brain barrier (BBB) disruption following cerebral ischemia, but little is known either about the source of free zinc in microvessels or the mechanism by which free zinc mediates ischemia-induced BBB damage. We utilized cellular and animal models of ischemic stroke to determine the source of high levels of free zinc and the mechanism of free zinc-mediated BBB damage after ischemia. We report that cerebral ischemia elevated the level of extracellular fluid (ECF-Zn) of ischemic brain, leading to exacerbated BBB damage in a rat stroke model. Specifically suppressing zinc release from neurons, utilizing neuronal-specific zinc transporter 3 (ZnT3) knockout mice, markedly reduced ECF-Zn and BBB permeability after ischemia. Intriguingly, the activity of zinc-dependent metalloproteinase-2 (MMP-2) was modulated by ECF-Zn levels. Elevated ECF-Zn during ischemia directly bound to MMP-2 in extracellular fluid, increased its zinc content and augmented MMP-2 activity, leading to the degradation of tight junction protein in cerebral microvessels and BBB disruption. These findings suggest the role of neuronal ZnT3 in modulating ischemia-induced BBB disruption and reveal a novel mechanism of MMP-2 activation in BBB disruption after stroke, demonstrating ZnT3 as an effective target for stroke treatment.

5.
Angew Chem Int Ed Engl ; 62(43): e202311654, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37679304

RESUMO

Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.

6.
Inorg Chem ; 62(40): 16574-16581, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37753782

RESUMO

Separating acetylene (C2H2) from other light hydrocarbons and carbon dioxide (CO2) mixtures under mild conditions poses significant challenges due to the remarkably similar properties between C2H2 and those gases. For the goal of C2H2 separation, a F-functionalized organic linker, H2F-PyIP = 2-fluorine-5-(4-pyridyl)isophthalic acid, was designed, and the corresponding metal-organic framework (MOF), {[Co2(F-PyIP)2DMF]·4H2O}n (1), was constructed. The MOF with open channels decorated by the active sites of the F groups revealed the exceptional C2H2 uptake and selectivity over CO2, C2H4, and CH4. The breakthrough experiments with different molar ratios of C2H2-C2H4, C2H2-CO2, and other gas mixtures further verified superior separation capacity of the MOF. In particular, the dynamic separation time intervals for gas mixtures (C2H2/CO2 = 1:1, 1:5, 1:10, and 1:20) fell in the range 30-44 min, highlighting the potential of the MOF for tackling the challenging C2H2/CO2 separation process.

7.
Inorg Chem ; 62(30): 11869-11875, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37450355

RESUMO

Herein, we used the 4-fluoro-[1,1'-biphenyl]-3,4',5-tricarboxylic acid (H3fbptc) ligand to design and construct a new metal-organic framework (MOF), [Cu3(fbptc)2(H2O)3]·3NMP (1), which possesses rich accessible metal sites and F functional groups in the porous walls and shows high uptake for C2H2 (119.3 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (14.4) and CO2 (3.6) at 298 K and 100 kPa. In particular, for the gas mixtures of C2H2-CH4 and C2H2-CO2, the MOF reveals large breakthrough time ratios (C2H2/CH4 = 13, C2H2/CO2 = 5.9), which are particularly prominent in dynamic breakthrough experiments, also confirming the excellent potential for the practical separation of C2H2 from two-component mixtures (C2H2-CH4 and C2H2-CO2) and even three-component mixtures (C2H2-CO2-CH4).

8.
J Sci Food Agric ; 103(14): 7284-7292, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37378640

RESUMO

BACKGROUND: Poly-γ-glutamic acid (γ-PGA) can promote crop growth and improve soil properties efficiently. However, the optimal application rate of γ-PGA in legume/non-legume intercropping systems is still unclear. A potted experiment was conducted to investigate the effects of five γ-PGA rates (0%, 0.1%, 0.2%, 0.3%, and 0.4%, represented by CK, P1, P2, P3, and P4, respectively) on biological nitrogen (N) fixation (BNF), water-N productivity, and nitrate distribution in a cotton/soybean intercropping system. RESULTS: The results showed that the growth indicators (plant height, stem diameter, leaf area index, root dry weight, root length) of cotton and soybean increased first and then decreased with increasing γ-PGA rates, and all growth indicators of cotton and soybean showed peaks in P3 and P2 treatments. The stable 15 N isotope method indicated that γ-PGA promoted the BNF capacity of soybean and soil. In particular, the percentage of N derived from the atmosphere (Ndfa) in soybean reached 61.94% in the P2 treatment. Poly-γ-glutamic acid improved the water-N productivity, and the total N partial factor productivity (NPFP) and water productivity (WP) in P3 treatment increased by 23.80% and 43.86% compared with the CK treatment. The γ-PGA mitigation of potential nitrate residue also decreased first and then increased with increasing γ-PGA rates. CONCLUSION: Multivariate regression analysis showed that 0.22% of the optimal γ-PGA application rate could obtain a higher yield and water-N productivity in cotton/soybean intercropping system simultaneously. © 2023 Society of Chemical Industry.


Assuntos
Agricultura , Nitratos , Agricultura/métodos , Nitratos/análise , Ácido Glutâmico , Nitrogênio/análise , Água/análise , Fixação de Nitrogênio , Fertilizantes/análise , Solo/química , Gossypium
9.
Chin J Physiol ; 66(3): 144-152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322625

RESUMO

Skin/muscle incision and retraction (SMIR) during surgeries can lead to chronic postsurgical pain (CPSP). The underlying mechanisms are still unclear. In the present study, we showed that SMIR of the thigh induced phosphorylation of extracellular signal-regulated kinase (ERK), followed by serum- and glucocorticoid-inducible kinase-1 (SGK1) activation in the spinal dorsal horn. Intrathecal injection of PD98059, an ERK inhibitor, or GSK650394, a SGK1 inhibitor, significantly attenuated mechanical pain hypersensitivity in SMIR rats. The level of tumor necrosis factor α and lactate in spinal cord was significantly decreased by PD98059 or GSK650394 injection. Furthermore, PD98059 decreased the activation of SGK1 in the spinal dorsal horn. These results indicate that ERK-SGK1 activation followed by proinflammatory mediator release in the spinal dorsal horn underlies CPSP.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Fator de Necrose Tumoral alfa , Ratos , Animais , Ratos Sprague-Dawley , Hiperalgesia , Ácido Láctico , Dor Pós-Operatória , Corno Dorsal da Medula Espinal , Medula Espinal
10.
J Colloid Interface Sci ; 646: 370-380, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207419

RESUMO

In recent years, small interfering RNA (siRNA) has been widely used in the treatment of human diseases, especially tumors, and has shown great appeal. However, the clinical application of siRNA faces several challenges. Insufficient efficacy, poor bioavailability, poor stability, and lack of responsiveness to a single therapy are the main problems affecting tumor therapy. Here, we designed a cell-penetrating peptide (CPP)-modified metal organic framework nanoplatform (named PEG-CPP33@ORI@survivin siRNA@ZIF-90, PEG-CPP33@NPs) for targeted co-delivery of oridonin (ORI), a natural anti-tumor active ingredient) and survivin siRNA in vivo. This can improve the stability and bioavailability of siRNA and the efficacy of siRNA monotherapy. The high drug-loading capacity and pH-sensitive properties of zeolite imidazolides endowed the PEG-CPP33@NPs with lysosomal escape abilities. The Polyethylene glycol (PEG)-conjugated CPP (PEG-CPP33) coating significantly improved the uptake in the PEG-CPP33@NPs in vitro and in vivo. The results showed that the co-delivery of ORI and survivin siRNA greatly enhanced the anti-tumor effect of PEG-CPP33@NPs, demonstrating the synergistic effect between ORI and survivin siRNA. In summary, the novel targeted nanobiological platform loaded with ORI and survivin siRNA presented herein showed great advantages in cancer therapy, and provides an attractive strategy for the synergistic application of chemotherapy and gene therapy.


Assuntos
Peptídeos Penetradores de Células , Estruturas Metalorgânicas , Nanopartículas , Neoplasias , Humanos , Survivina/genética , RNA Interferente Pequeno/genética , Lisossomos , Nanopartículas/química , Linhagem Celular Tumoral
11.
J Sci Food Agric ; 103(13): 6307-6316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37183484

RESUMO

BACKGROUND: Biological nitrogen fixation in legumes and their transfer of nitrogen to non-legumes in legume/non-legume intercropping systems are considered to be important for the improvement of productivity. However, research on interspecific interaction and root nitrogen transfer in cotton/soybean intercropping systems has rarely been undertaken. In this study, the roots of cotton and soybean were separated with either complete root barriers (CB), using plastic film, or semi-root barriers (SB), using nylon net. No root barrier (NB) was used as the control. RESULTS: The results showed that cotton produced more above-ground dry matter (DM) than soybean. The above-ground DM and nitrogen uptake of cotton was greatest with the NB treatment. The above-ground DM and nitrogen uptake of soybean was greatest with the CB treatment. At the harvest stage, the nitrogen transfer rate from soybean to cotton was 22.47% with the SB treatment and 40.41% with the NB treatment. Interspecific root interaction increased the nitrogen transfer amount, especially for the cotton roots in the 0-15 cm soil layer and for the soybean roots in the 0-30 cm soil layer. The root distribution of soybean was the key factor affecting nitrogen transfer amount, and nitrogen transfer amount was the key factor affecting nitrogen uptake of cotton in the cotton/soybean intercropping system. CONCLUSION: These results indicated that nitrogen transfer from soybean to cotton through root interaction improved cotton above-ground DM and nitrogen uptake. © 2023 Society of Chemical Industry.


Assuntos
Agricultura , Agricultura/métodos , Nitrogênio/análise , Solo , Tecnologia , Gossypium , Verduras
12.
Adv Mater ; 35(24): e2301549, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058392

RESUMO

Urea oxidation reaction (UOR) is an ideal replacement of the conventional anodic oxygen evolution reaction (OER) for efficient hydrogen production due to the favorable thermodynamics. However, the UOR activity is severely limited by the high oxidation potential of Ni-based catalysts to form Ni3+ , which is considered as the active site for UOR. Herein, by using in situ cryoTEM, cryo-electron tomography, and in situ Raman, combined with theoretical calculations, a multistep dissolution process of nickel molybdate hydrate is reported, whereby NiMoO4 ·xH2 O nanosheets exfoliate from the bulk NiMoO4 ·H2 O nanorods due to the dissolution of Mo species and crystalline water, and further dissolution results in superthin and amorphous nickel (II) hydroxide (ANH) flocculus catalyst. Owing to the superthin and amorphous structure, the ANH catalyst can be oxidized to NiOOH at a much lower potential than conventional Ni(OH)2 and finally exhibits more than an order of magnitude higher current density (640 mA cm-2 ), 30 times higher mass activity, 27 times higher TOF than those of Ni(OH)2 catalyst. The multistep dissolution mechanism provides an effective methodology for the preparation of highly active amorphous catalysts.

13.
Front Cell Neurosci ; 17: 1065873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970418

RESUMO

Intracellular zinc accumulation has been shown to be associated with neuronal death after cerebral ischemia. However, the mechanism of zinc accumulation leading to neuronal death in ischemia/reperfusion (I/R) is still unclear. Intracellular zinc signals are required for the production of proinflammatory cytokines. The present study investigated whether intracellular accumulated zinc aggravates I/R injury through inflammatory response, and inflammation-mediated neuronal apoptosis. Male Sprague-Dawley rats were treated with vehicle or zinc chelator TPEN 15 mg/kg before a 90-min middle cerebral artery occlusion (MCAO). The expressions of proinflammatory cytokines TNF-α, IL-6, NF-κB p65, and NF-κB inhibitory protein IκB-α, as well as anti-inflammatory cytokine IL-10 were assessed at 6 or 24 h after reperfusion. Our results demonstrated that the expression of TNF-α, IL-6, and NF-κB p65 increased after reperfusion, while the expression of IκB-α and IL-10 decreased, suggesting that cerebral ischemia triggers inflammatory response. Furthermore, TNF-α, NF-κB p65, and IL-10 were all colocalized with the neuron-specific nuclear protein (NeuN), suggesting that the ischemia-induced inflammatory response occurs in neurons. Moreover, TNF-α was also colocalized with the zinc-specific dyes Newport Green (NG), suggesting that intracellular accumulated zinc might be associated with neuronal inflammation following cerebral I/R. Chelating zinc with TPEN reversed the expression of TNF-α, NF-κB p65, IκB-α, IL-6, and IL-10 in ischemic rats. Besides, IL-6-positive cells were colocalized with TUNEL-positive cells in the ischemic penumbra of MCAO rats at 24 h after reperfusion, indicating that zinc accumulation following I/R might induce inflammation and inflammation-associated neuronal apoptosis. Taken together, this study demonstrates that excessive zinc activates inflammation and that the brain injury caused by zinc accumulation is at least partially due to specific neuronal apoptosis induced by inflammation, which may provide an important mechanism of cerebral I/R injury.

14.
Neurosci Lett ; 795: 137034, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36584806

RESUMO

Nitric oxide (NO) was one of the key factors to sustain hypoxia-inducible factor-1- α (HIF-1α) activation during hypoxia. However, the mechanism by which NO production promotes upregulation of HIF-1α to cause cerebral ischemia/reperfusion (I/R) injury remains unclear. The present study investigated whether eliminating NO would decrease HIF-1α level, and then reduce the subsequent inflammatory actions as well as neuronal apoptotic death in middle cerebral artery occlusion (MCAO) rats. Our results revealed that HIF-1α was correlated with 3-NT, a marker for nitrosative/oxidative stress, in the brain of MCAO rats. Treatment with NOS inhibitor L-NAME suppressed HIF-1α/3-NT double-positive cells, suggesting that HIF-1α was correlated with NO overproduction during cerebral I/R. Furthermore, pro-inflammatory cytokines TNF-α, IL-1ß and NF-κB p65 were significantly increased and colocalized with HIF-1α in the brain of MCAO rats, all of which could be attenuated by NO inhibition, suggesting that eliminating NO reduced MCAO-induced HIF-1α upregulation, which in turn exerted anti-inflammatory actions. Accordingly, cleaved caspase-3, as well as HIF-1α and TUNEL double-positive cells in ischemic brain were also decreased by L-NAME treatment. These results suggest that NO accumulation after cerebral ischemia leads to HIF-1α upregulation, which may activate pro-inflammatory cytokines, resulting in neuronal apoptotic death. These findings demonstrate a novel mechanism of NO-induced cerebral I/R injury.


Assuntos
Isquemia Encefálica , Traumatismo por Reperfusão , Ratos , Animais , Óxido Nítrico , NG-Nitroarginina Metil Éster , Isquemia Encefálica/terapia , Apoptose , Infarto da Artéria Cerebral Média , Hipóxia , Inflamação , Citocinas , Subunidade alfa do Fator 1 Induzível por Hipóxia
15.
CNS Neurosci Ther ; 29(3): 866-877, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36419252

RESUMO

AIMS: Remote ischemic pre-conditioning (RIPC) protects against ischemia/reperfusion (I/R) injury. However, the mechanisms underlying this protection remain unclear. In the present study, we investigated the role of Janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway and cell cycle arrest, and their relationship with neuronal apoptosis following RIPC. METHODS: A rat cerebral I/R injury model was induced by middle cerebral artery occlusion (MCAO), and AG490 was used to investigate the mechanisms of RIPC. p-JAK2-, p-STAT3-, cyclin D1-, and cyclin-dependent kinase 6 (CDK6) expression was assessed by Western blotting and immunofluorescence staining. RESULTS: RIPC reduced the infarct volume, improved neurological function, and increased neuronal survival. Furthermore, p-JAK2 and p-STAT3 were detected during the initial phase of reperfusion; the expression levels were significantly increased at 3 and 24 h after reperfusion and were suppressed by RIPC. Additionally, the MCAO-induced upregulation of the cell cycle regulators cyclin D1 and CDK6 was ameliorated by RIPC. Meanwhile, cyclin D1 and CDK6 were colocalized with p-STAT3 in the ischemic brain. CONCLUSION: RIPC ameliorates the induction of the JAK2/STAT3 pathway and cell cycle regulators cyclin D1 and CDK6 by MCAO, and this net inhibition of cell cycle re-entry by RIPC is associated with downregulation of STAT3 phosphorylation.


Assuntos
Isquemia Encefálica , Precondicionamento Isquêmico , Traumatismo por Reperfusão , Ratos , Animais , Fator de Transcrição STAT3/metabolismo , Ciclina D1/metabolismo , Ciclina D1/farmacologia , Transdução de Sinais , Isquemia Encefálica/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Infarto da Artéria Cerebral Média/complicações , Ciclo Celular , Membro Posterior , Janus Quinase 2/metabolismo , Janus Quinase 2/farmacologia
16.
Angew Chem Int Ed Engl ; 61(48): e202213015, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36202779

RESUMO

Adsorption technology based on ethane-selective materials is a promising alternative to energy-intensive cryogenic distillation for separating ethane (C2 H6 ) and ethylene (C2 H4 ). We employed a pore engineering strategy to tune the pore environment of a metal-organic framework (MOF) through organic functional groups and boosted the C2 H6 /C2 H4 separation of the MOF. Introduction of amino (-NH2 ) groups into Tb-MOF-76 not only decreased pore sizes but also facilitated multiple guest-host interactions in confined pores. The NH2 -functionalized Tb-MOF-76(NH2 ) has increased C2 H6 and C2 H4 uptakes and C2 H6 /C2 H4 selectivity. The results of experimental and simulated transient breakthroughs reveal that Tb-MOF-76(NH2 ) has significantly improved one-step separation performance for C2 H6 /C2 H4 mixtures with a high C2 H4 (>99.95 %) productivity of 17.66 L kg-1 compared to 7.53 L kg-1 by Tb-MOF-76, resulting from the suitable pore confinement and accessible -NH2 groups on pore surfaces.

17.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234626

RESUMO

We investigate the third-order nonlinear optical properties of epsilon-near-zero (ENZ) Au/dye-doped fused silica multilayered metamaterials in the visible spectral range for TM incident by using nonlocal effective medium theory at different incidence angles. The nonlocal response affects the permittivity of anisotropic metamaterials when the thickness of the layer cannot be much smaller than the incident wavelength. By doping pump dye gain material within the dielectric layer to compensate for the metal loss, the imaginary part of the effective permittivity is reduced to 10-4, and the optical nonlinear refractive index and nonlinear absorption coefficient are enhanced. The real and imaginary parts of the permittivity are simultaneously minimized when the central emission wavelength of the gain material is close to the ENZ wavelength, and the nonlinear refraction coefficient reaches the order of 10-5 cm2/W, which is five orders of magnitude larger than that of the nonlinear response of the metamaterial without the gain medium. Our results demonstrate that a smaller imaginary part of the permittivity can be obtained by doping gain materials within the dielectric layer; it offers the promise of designing metamaterials with large nonlinearity at arbitrary wavelengths.

18.
Theor Appl Genet ; 135(12): 4233-4243, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36100693

RESUMO

KEY MESSAGE: A major resistance QTL was identified on chromosome 6 in rice variety Wuke; both overexpression and knockdown experiments confirmed that OsGLK1 is the candidate gene for association with Rice black-streaked dwarf virus disease. Rice black-streaked dwarf virus disease is one of the most destructive rice viral diseases in China and East Asia. Progress has been limited in RBSDVD resistance breeding due to inadequate knowledge on the underlying functional genes. In this study, a major QTL for RBSDV (rice black-streaked dwarf virus) independent of SBPH (small brown planthopper) resistance was mapped in a 1.8 Mb interval on chromosome 6 by using an F2:3 population originated from resistant rice variety Wuke. Representative transcripts within this region were analysed and three genes showing amino acid sequence variation in functional domains were selected for transformation. Overexpression experiments showed that one gene exhibited significant enhanced resistance compared to control lines, encoding protein involving Myb domain and probable transcription factor Golden 2-like1 (GLK1). Furthermore, OsGLK1 knockdown rice lines were investigated and the resistance ability was significantly declined without this gene compared to the wild type. Taken together, both overexpression and knockdown experiments strongly suggested that OsGLK1 plays an important role for RBSDV resistance and contributes to the major QTL. The study paves the way for elucidating the molecular mechanism underlying RBSDVD resistance and the molecular markers associated with OsGLK1 may be used for marker-assisted selection.


Assuntos
Oryza , Vírus de Plantas , Reoviridae , Reoviridae/genética , Fatores de Transcrição , Oryza/genética , Melhoramento Vegetal , Vírus de Plantas/genética , Doenças das Plantas/genética
19.
Cardiovasc Diagn Ther ; 12(3): 289-304, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35800356

RESUMO

Background: Myocardial infarction (MI) is a common cause of death. Thioredoxin-interacting protein (TXNIP) expression increases after MI, and it exerts a negative regulatory effect on cardiac function after MI. Our study aimed to investigate the specific regulatory mechanism of TXNIP on angiogenesis and cardiomyocyte apoptosis after MI. Methods: The TXNIP gene knock-in (TXNIP-KI) and knock-out (TXNIP-KO) mice were generated, respectively. Eight-week-old male TXNIP-KO, TXNIP-KI, and wild type (WT) mice were subjected to MI by permanent ligation of the left anterior descending artery. Cardiomyocyte apoptosis was detected by TUNEL assay on the 4th post-surgery day. The expressions of TXNIP, hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), phosphorylated protein kinase B (p-AKT), p-AMP-activated protein kinase (p-AMPK), cleaved caspase-3, and caspase-3 were detected by Western blot. Quantitative real-time PCR was performed to detect the expression of TXNIP, HIF-1α, VEGF, prolyl hydroxylase (PHD) 1, and factor inhibiting HIF (FIH). In addition, the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level in each group were also measured. On day 7 after MI, the hearts of sacrificed animals were analyzed by immunohistochemistry to assess CD31 expression and determine the density of angiogenesis. One month after treatment, the cardiac functional and structural changes were determined by echocardiography and the level of myocardial fibrosis was observed by Masson staining. Results: Compared with WT mice, TXNIP-KO mice had a significantly improved cardiac functional recovery after MI, and the proportion of myocardial fibrosis area was dramatically reduced, cardiomyocyte apoptosis was decreased, and angiogenesis was significantly increased; TXNIP-KI mice reversed in these changes. The expression of HIF-1α, p-AKT, and p-AMPK increased after MI in TXNIP-KO mice, and the mRNA expression of PHD 1 and FIH decreased. TXNIP-KI mice reversed in these changes. Conclusions: After MI, TXNIP down-regulated the level of HIF-1α and VEGF, reduced the number of angiogenesis, increased cardiomyocyte apoptosis, and ultimately led to a poor prognosis of ischemic myocardium. TXNIP was a protein with negative effects after MI and was expected to be a target for the prevention and treatment of MI.

20.
PLoS One ; 17(7): e0267331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35802723

RESUMO

AIMS: The renin-angiotensin system (RAS) is over-activated and the serum angiotensin II (Ang II) level increased in obese patients, while their correlations were incompletely understood. This study aims to explore the role of Ang II in diet-induced obesity by focusing on adipose lipid anabolism and catabolism. METHODS: Rat model of AT1aR gene knockout were established to investigate the special role of Ang II on adipose lipid metabolism. Wild-type (WT) and AT1aR gene knockout (AT1aR-/-) SD rats were fed with normal diet or high-fat diet for 12 weeks. Adipose morphology and adipose lipid synthesis and lipolysis were examined. RESULTS: AT1aR deficiency activated lipolysis-related enzymes and increased the levels of NEFAs and glycerol released from adipose tissue in high-fat diet rats, while did not affect triglycerides synthesis. Besides, AT1aR knockout promoted energy expenditure and fatty acids oxidation in adipose tissue. cAMP levels and PKA phosphorylation in the adipose tissue were significantly increased in AT1aR-/- rats fed with high-fat. Activated PKA could promote adipose lipolysis and thus improved adipose histomorphology and insulin sensitivity in high-fat diet rats. CONCLUSIONS: AT1aR deficiency alleviated adipocyte hypertrophy in high-fat diet rats by promoting adipose lipolysis probably via cAMP/PKA pathway, and thereby delayed the onset of obesity and related metabolic diseases.


Assuntos
Dieta Hiperlipídica , Lipólise , Obesidade , Receptor Tipo 1 de Angiotensina , Tecido Adiposo/metabolismo , Angiotensina II/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Técnicas de Inativação de Genes , Obesidade/genética , Obesidade/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...